PrinceNai
Joined: 31 Oct 2016 Posts: 478 Location: Montenegro
|
BMP280 18f46k22 |
Posted: Mon Jul 19, 2021 1:47 am |
|
|
This is the code to read BMP280 sensor. Chinese variant. It sends readings to uart and oled1306. BMP280 and oled are on the same i2c bus.
main.c:
Code: |
#include <main.h>
/*
* Interfacing PIC46k22 microcontroller with BMP280 temperature and pressure sensor.original code for pic 16f877
* C Code for CCS C compiler.
* Temperature in Celsius and pressure values in hectoPascals are displayed on uart and 128x64 1306 style Oled
* This is a free software with NO WARRANTY.
* copied and adopted with considerable shame,because I couldn't do it myself, from one of the kings of ccs c: https://simple-circuit.com/
* https://simple-circuit.com/pic16f877a-bmp280-sensor-ccs-c/
* below zero temperatures are not handled here, but they are in the original post. For Canada only. Neither is negative air pressure, since it wasn't discovered or proved yet. Hope they never do. See link above.
* change pressure to signed if it happens
*/
// includes
#include <BMP280_Lib.c> // include BMP280 sensor driver source file
#include <STDLIB.h>
#include <my_oled1306.c> // include oled driver
// variables
signed int32 temperature;
unsigned int32 pressure;
void main()
{
// initialise OLED
OLED_commands(init_sequence,sizeof(init_sequence)); // initialise OLED display
OLED_CLS();
// OLED
set=TRUE; // white on black text
// set = FALSE;
size=NORMAL; // 21 characters in a row, 8 rows, total 168 chars
// size=LARGE; // 10 characters, 4 rows. Use rows 0,2,4,6 to avoid overlapping
OLED_CLS(); // clear the physical screen
delay_ms(10);
Write_OLED_xy(1,1,"BAROMETER V 1.0");
delay_ms(1500); // show that for a while
OLED_CLS();
delay_ms(10);
// initialize BMP280 sensor
if(BMP280_begin(MODE_NORMAL) == 0){ // connection error or device address wrong!
while(TRUE); // stay here
}
while(TRUE){
// Read temperature (in hundredths of deg C) and pressure (in Pa)
// values from BMP280 sensor
BMP280_readTemperature(&temperature); // read temperature
BMP280_readPressure(&pressure); // read pressure
// do the conversion and send to the terminal
printf("%02Lu.%02Lu%cC, %04Lu.%02LuhPa\r\n", temperature / 100, temperature % 100, 248, pressure/100, pressure % 100);
// display temperature on oled
OLED_gotoxy(1,1);
printf(OLED_putc,"Temperature: %02Lu.%02Lu%cC\r\n", temperature / 100, temperature % 100, 248); // 248 code isn't working as a deg sign, it shows blank!!!
// display pressure on oled
OLED_gotoxy(1,3);
printf(OLED_putc,"Pressure: %04Lu.%02LuhPa\r\n", pressure/100, pressure % 100);
delay_ms(2000); // wait for 2 seconds and repeat
}
}
// end of code.
|
main.h
Code: |
#include <18F46K22.h>
#device ADC=10
#FUSES NOWDT // No Watch Dog Timer
#FUSES PUT // power-on timer
//#device ICD=TRUE
#device PASS_STRINGS = IN_RAM //copy all the strings to RAM to allow access with pointers
#use delay(internal=32000000)
#use rs232(baud=57600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8,stream=PORT1,errors)
#use i2c(Master,Fast,sda=PIN_C4,scl=PIN_C3,STREAM = BMP280_STREAM,force_hw)
#define BMP280_I2C_ADDRESS 0xEC
|
driver BMP280_Lib.c
Code: |
///////////////////////////////////////////////////////////////////////////
//// ////
//// BMP280_Lib.c ////
//// ////
//// Driver for CCS C compiler ////
//// ////
//// Driver for Bosch BMP280 sensor. This sensor can read temperature ////
//// and pressure. ////
//// This driver only supports I2C mode, it doesn't support SPI mode. ////
//// ////
///////////////////////////////////////////////////////////////////////////
//// ////
//// https://simple-circuit.com/ ////
//// ////
///////////////////////////////////////////////////////////////////////////
#include <stdint.h>
#ifndef BMP280_I2C_ADDRESS
#define BMP280_I2C_ADDRESS 0xEE
#endif
#define BMP280_CHIP_ID 0x58
#define BMP280_REG_DIG_T1 0x88
#define BMP280_REG_DIG_T2 0x8A
#define BMP280_REG_DIG_T3 0x8C
#define BMP280_REG_DIG_P1 0x8E
#define BMP280_REG_DIG_P2 0x90
#define BMP280_REG_DIG_P3 0x92
#define BMP280_REG_DIG_P4 0x94
#define BMP280_REG_DIG_P5 0x96
#define BMP280_REG_DIG_P6 0x98
#define BMP280_REG_DIG_P7 0x9A
#define BMP280_REG_DIG_P8 0x9C
#define BMP280_REG_DIG_P9 0x9E
#define BMP280_REG_CHIPID 0xD0
#define BMP280_REG_SOFTRESET 0xE0
#define BMP280_REG_STATUS 0xF3
#define BMP280_REG_CONTROL 0xF4
#define BMP280_REG_CONFIG 0xF5
#define BMP280_REG_PRESS_MSB 0xF7
int32_t adc_T, adc_P, t_fine;
// BMP280 sensor modes, register ctrl_meas mode[1:0]
enum BMP280_mode
{
MODE_SLEEP = 0x00, // sleep mode
MODE_FORCED = 0x01, // forced mode
MODE_NORMAL = 0x03 // normal mode
} ;
// oversampling setting. osrs_t[2:0], osrs_p[2:0]
enum BMP280_sampling
{
SAMPLING_SKIPPED = 0x00, //skipped, output set to 0x80000
SAMPLING_X1 = 0x01, // oversampling x1
SAMPLING_X2 = 0x02, // oversampling x2
SAMPLING_X4 = 0x03, // oversampling x4
SAMPLING_X8 = 0x04, // oversampling x8
SAMPLING_X16 = 0x05 // oversampling x16
} ;
// filter setting filter[2:0]
enum BMP280_filter
{
FILTER_OFF = 0x00, // filter off
FILTER_2 = 0x01, // filter coefficient = 2
FILTER_4 = 0x02, // filter coefficient = 4
FILTER_8 = 0x03, // filter coefficient = 8
FILTER_16 = 0x04 // filter coefficient = 16
} ;
// standby (inactive) time in ms (used in normal mode), t_sb[2:0]
enum standby_time
{
STANDBY_0_5 = 0x00, // standby time = 0.5 ms
STANDBY_62_5 = 0x01, // standby time = 62.5 ms
STANDBY_125 = 0x02, // standby time = 125 ms
STANDBY_250 = 0x03, // standby time = 250 ms
STANDBY_500 = 0x04, // standby time = 500 ms
STANDBY_1000 = 0x05, // standby time = 1000 ms
STANDBY_2000 = 0x06, // standby time = 2000 ms
STANDBY_4000 = 0x07 // standby time = 4000 ms
} ;
struct
{
uint16_t dig_T1;
int16_t dig_T2;
int16_t dig_T3;
uint16_t dig_P1;
int16_t dig_P2;
int16_t dig_P3;
int16_t dig_P4;
int16_t dig_P5;
int16_t dig_P6;
int16_t dig_P7;
int16_t dig_P8;
int16_t dig_P9;
} BMP280_calib;
// writes 1 byte '_data' to register 'reg_addr'
void BMP280_Write(uint8_t reg_addr, uint8_t _data)
{
I2C_Start(BMP280_STREAM);
I2C_Write(BMP280_STREAM, BMP280_I2C_ADDRESS);
I2C_Write(BMP280_STREAM, reg_addr);
I2C_Write(BMP280_STREAM, _data);
I2C_Stop(BMP280_STREAM);
}
// reads 8 bits from register 'reg_addr'
uint8_t BMP280_Read8(uint8_t reg_addr)
{
uint8_t ret;
I2C_Start(BMP280_STREAM);
I2C_Write(BMP280_STREAM, BMP280_I2C_ADDRESS);
I2C_Write(BMP280_STREAM, reg_addr);
I2C_Start(BMP280_STREAM);
I2C_Write(BMP280_STREAM, BMP280_I2C_ADDRESS | 1);
ret = I2C_Read(BMP280_STREAM, 0);
I2C_Stop(BMP280_STREAM);
return ret;
}
// reads 16 bits from register 'reg_addr'
uint16_t BMP280_Read16(uint8_t reg_addr)
{
union
{
uint8_t b[2];
uint16_t w;
} ret;
I2C_Start(BMP280_STREAM);
I2C_Write(BMP280_STREAM, BMP280_I2C_ADDRESS);
I2C_Write(BMP280_STREAM, reg_addr);
I2C_Start(BMP280_STREAM);
I2C_Write(BMP280_STREAM, BMP280_I2C_ADDRESS | 1);
ret.b[0] = I2C_Read(BMP280_STREAM, 1);
ret.b[1] = I2C_Read(BMP280_STREAM, 0);
I2C_Stop(BMP280_STREAM);
return(ret.w);
}
// BMP280 sensor configuration function
void BMP280_Configure(BMP280_mode mode, BMP280_sampling T_sampling,
BMP280_sampling P_sampling, BMP280_filter filter, standby_time standby)
{
uint8_t _ctrl_meas, _config;
_config = ((standby << 5) | (filter << 2)) & 0xFC;
_ctrl_meas = (T_sampling << 5) | (P_sampling << 2) | mode;
BMP280_Write(BMP280_REG_CONFIG, _config);
BMP280_Write(BMP280_REG_CONTROL, _ctrl_meas);
}
// initializes the BMP280 sensor, returns 1 if OK and 0 if error
int1 BMP280_begin(BMP280_mode mode,
BMP280_sampling T_sampling = SAMPLING_X1,
BMP280_sampling P_sampling = SAMPLING_X1,
BMP280_filter filter = FILTER_OFF,
standby_time standby = STANDBY_0_5)
{
if(BMP280_Read8(BMP280_REG_CHIPID) != BMP280_CHIP_ID)
return 0;
// reset the BMP280 with soft reset
BMP280_Write(BMP280_REG_SOFTRESET, 0xB6);
delay_ms(100);
// if NVM data are being copied to image registers, wait 100 ms
while ( (BMP280_Read8(BMP280_REG_STATUS) & 0x01) == 0x01 )
delay_ms(100);
BMP280_calib.dig_T1 = BMP280_Read16(BMP280_REG_DIG_T1);
BMP280_calib.dig_T2 = BMP280_Read16(BMP280_REG_DIG_T2);
BMP280_calib.dig_T3 = BMP280_Read16(BMP280_REG_DIG_T3);
BMP280_calib.dig_P1 = BMP280_Read16(BMP280_REG_DIG_P1);
BMP280_calib.dig_P2 = BMP280_Read16(BMP280_REG_DIG_P2);
BMP280_calib.dig_P3 = BMP280_Read16(BMP280_REG_DIG_P3);
BMP280_calib.dig_P4 = BMP280_Read16(BMP280_REG_DIG_P4);
BMP280_calib.dig_P5 = BMP280_Read16(BMP280_REG_DIG_P5);
BMP280_calib.dig_P6 = BMP280_Read16(BMP280_REG_DIG_P6);
BMP280_calib.dig_P7 = BMP280_Read16(BMP280_REG_DIG_P7);
BMP280_calib.dig_P8 = BMP280_Read16(BMP280_REG_DIG_P8);
BMP280_calib.dig_P9 = BMP280_Read16(BMP280_REG_DIG_P9);
BMP280_Configure(mode, T_sampling, P_sampling, filter, standby);
return 1;
}
// Takes a new measurement, for forced mode only!
// Returns 1 if ok and 0 if error (sensor is not in sleep mode)
int1 BMP280_ForcedMeasurement()
{
uint8_t ctrl_meas_reg = BMP280_Read8(BMP280_REG_CONTROL);
if ( (ctrl_meas_reg & 0x03) != 0x00 )
return 0; // sensor is not in sleep mode
// set sensor to forced mode
BMP280_Write(BMP280_REG_CONTROL, ctrl_meas_reg | 1);
// wait for conversion complete
while (BMP280_Read8(BMP280_REG_STATUS) & 0x08)
delay_ms(1);
return 1;
}
// read (updates) adc_P, adc_T and adc_H from BMP280 sensor
void BMP280_Update()
{
union
{
uint8_t b[4];
uint32_t dw;
} ret;
ret.b[3] = 0x00;
I2C_Start(BMP280_STREAM);
I2C_Write(BMP280_STREAM, BMP280_I2C_ADDRESS);
I2C_Write(BMP280_STREAM, BMP280_REG_PRESS_MSB);
I2C_Start(BMP280_STREAM);
I2C_Write(BMP280_STREAM, BMP280_I2C_ADDRESS | 1);
ret.b[2] = I2C_Read(BMP280_STREAM, 1);
ret.b[1] = I2C_Read(BMP280_STREAM, 1);
ret.b[0] = I2C_Read(BMP280_STREAM, 1);
adc_P = (ret.dw >> 4) & 0xFFFFF;
ret.b[2] = I2C_Read(BMP280_STREAM, 1);
ret.b[1] = I2C_Read(BMP280_STREAM, 1);
ret.b[0] = I2C_Read(BMP280_STREAM, 0);
I2C_Stop(BMP280_STREAM);
adc_T = (ret.dw >> 4) & 0xFFFFF;
}
// Reads temperature from BMP280 sensor.
// Temperature is stored in hundredths C (output value of "5123" equals 51.23 DegC).
// Temperature value is saved to *temp, returns 1 if OK and 0 if error.
int1 BMP280_readTemperature(int32_t *temp)
{
int32_t var1, var2;
BMP280_Update();
// calculate temperature
var1 = ((((adc_T / 8) - ((int32_t)BMP280_calib.dig_T1 * 2))) *
((int32_t)BMP280_calib.dig_T2)) / 2048;
var2 = (((((adc_T / 16) - ((int32_t)BMP280_calib.dig_T1)) *
((adc_T / 16) - ((int32_t)BMP280_calib.dig_T1))) / 4096) *
((int32_t)BMP280_calib.dig_T3)) / 16384;
t_fine = var1 + var2;
*temp = (t_fine * 5 + 128) / 256;
return 1;
}
// Reads pressure from BMP280 sensor.
// Pressure is stored in Pa (output value of "96386" equals 96386 Pa = 963.86 hPa).
// Pressure value is saved to *pres, returns 1 if OK and 0 if error.
int1 BMP280_readPressure(uint32_t *pres)
{
int32_t var1, var2;
uint32_t p;
// calculate pressure
var1 = (((int32_t)t_fine) / 2) - (int32_t)64000;
var2 = (((var1/4) * (var1/4)) / 2048 ) * ((int32_t)BMP280_calib.dig_P6);
var2 = var2 + ((var1 * ((int32_t)BMP280_calib.dig_P5)) * 2);
var2 = (var2/4) + (((int32_t)BMP280_calib.dig_P4) * 65536);
var1 = ((((int32_t)BMP280_calib.dig_P3 * (((var1/4) * (var1/4)) / 8192 )) / 8) +
((((int32_t)BMP280_calib.dig_P2) * var1)/2)) / 262144;
var1 =((((32768 + var1)) * ((int32_t)BMP280_calib.dig_P1)) / 32768);
if (var1 == 0)
return 0; // avoid exception caused by division by zero
p = (((uint32_t)(((int32_t)1048576) - adc_P) - (var2 / 4096))) * 3125;
if (p < 0x80000000)
p = (p * 2) / ((uint32_t)var1);
else
p = (p / (uint32_t)var1) * 2;
var1 = (((int32_t)BMP280_calib.dig_P9) * ((int32_t)(((p/8) * (p/8)) / 8192))) / 4096;
var2 = (((int32_t)(p/4)) * ((int32_t)BMP280_calib.dig_P8)) / 8192;
p = (uint32_t)((int32_t)p + ((var1 + var2 + (int32_t)BMP280_calib.dig_P7) / 16));
*pres = p;
return 1;
}
// end of code.
|
my_oled1306.c
Code: |
/*
Now the big limitation.....
In serial modes (SPI/I2C), this chip provides no ability to read back it's RAM.
So we have a problem. If we want to write a line across the screen, and leave
another line that is already there 'undestroyed' where they cross, how can we
'know' the other line is there?. Basically the host chip needs to have a copy
of the display memory so it can hold a copy of any graphics and know what is
going on. Problem is that this is just not possible, on a PIC with limited RAM.
So this driver works by overwriting for all text writes....
But see further down for the 'exception' to this.
*/
//It is most efficiently used by preparing the whole line of text first
//and then sending this - it then uses a 'burst' transmission, to give very
//fast updates. It does offer a 'putc' though, but this is slower.
//It does not properly handle wrapping at the end of the line.
//The putc function adds support for \n, \r, and \f.
//Functions:
// OLED_CLS(); //clears the screen
// OLED_gotoxy(x, y); //goto column/row 0-20 for the column
// //0-7 for the row
// OLED_text(*text, number);
// //This sends 'number' bytes from the array
// //pointed to by 'text', to the display
// OLED_putc(c); //sends 'c' to the display. Beware though
// //if you go beyond the end of the line
// //- you'll get partial characters....
// OLED_textbar(width); //Displays a bargraph. With width=50
// //you get a 50:50 display of bar/void.
//Two global variables affect how things are displayed.
// size=NORMAL;
// size=LARGE; //switches between showing 21*8 & 10*4
// size=DOUBLE_HEIGHT //Gives 21*4 - great for the bargraph
// set=TRUE; //default. Pixels are 'set' when written, so
// //turn on.
// set=FALSE; //all write functions now invert.
//The CLS will now set the screen white. Text characters print in black
//Then the second part of the driver is a 'window' driver. With this you can
//define a small graphic 'window', and draw things into this. This can then be
//rapidly copied to the display. So you could (for instance), plot a tiny graph,
//end then draw this on the display.
//The window must be a multiple of 8 pixels high, and can only be placed
//at a 'text' location, so you can't put it (say) 12 pixels down the screen,
//but only 8, 16, 24 etc..
//The size of the window determines how much RAM is used. So a 64*16 window
//uses 128 bytes of RAM (64*16/8).
//Neat thing is though, that you can draw an image on the window, put this on
//the screen, and then draw a second image, and put this somewhere else,
//without using any more memory. At the moment, I have only implemented two
//functions to draw to this window.
//If you don't want the graphic ability, if you #define TEXT_ONLY, then only
//the text mode driver will be loaded.
//With the graphic driver being used, the following extra functions are
//available:
// clear_window(); //clears all pixels 'black' (if set==TRUE), or white.
// set_pixel(x, y); //sets a pixel at x,y in the window.
// //x=0 to WINDOW_WIDTH-1 (left to right)
// //y=0 to WINDOW_HEIGHT-1 (top to bottom)
// line(x1, y1, x2, y2); //draws a line from x1,y1 to x2, y2
// rect(x1, y1, x2, y2); //draws a rectangle
// circle(x, y, radius, fill); //draws a circle
// //This draws a circle of radius 'radius' centred at x,y. If 'fill' is
// //true this is filled....
//
// draw_window(x, int8 y); //This draws the window onto the screen at
// //x=0 to 128, y=0 to 7.
//What you do is simply draw the shape you want into the window, and then
//this can be drawn onto the screen.
//I have not included font drawing, since this takes a lot more space....
//'set' again controls whether a pen, or eraser is used. So (for example), if you
//wanted a 'thick' circle, you could either draw several using the pen,
//without 'fill' enabled, or could draw one with fill, then change set to
//false, and draw a smaller one, to give a thick ring.
//display dimensions - the physical LCD
//#define S_LCDWIDTH 128
#define S_LCDWIDTH 130
#define S_LCDHEIGHT 64
//If you want to use the SH1106, add this #define
//#define SH1106
#define TEXT_ONLY //If this is defined, gives a smaller text driver only
//Size of graphics 'window' see the graphics section for explanation
#define WINDOW_WIDTH 64
#define WINDOW_HEIGHT 16 //sizes of the graphic window in pixels
#define SSDADDR 0x78 //address for the chip - usually 0x7C or 0x78.
#define COMMAND_ONLY 0b00000000 //next byte is a command only
#define DATA_ONLY 0b01000000 //next byte is data
//directly from the data sheet - commands - not all used
#define S_EXTERNALVCC 0x1
#define S_SWITCHCAPVCC 0x2
#define S_SETLOWCOLUMN 0x00
#define S_SETHIGHCOLUMN 0x10
#define S_MEMORYMODE 0x20
#define S_COLUMNADDR 0x21
#define S_PAGEADDR 0x22
#define S_SETSTARTLINE 0x40
#define S_ROWADDRESS 0xB0
#define S_SETCONTRAST 0x81
#define S_CHARGEPUMP 0x8D
#define S_SEGREMAP 0xA0
#define S_DISPLAYALLON_RESUME 0xA4
#define S_DISPLAYALLON 0xA5
#define S_NORMALDISPLAY 0xA6
#define S_INVERTDISPLAY 0xA7
#define S_SETMULTIPLEX 0xA8
#define S_DISPLAYOFF 0xAE
#define S_DISPLAYON 0xAF
#define S_COMSCANINC 0xC0
#define S_COMSCANDEC 0xC8
#define S_SETDISPLAYOFFSET 0xD3
#define S_SETCOMPINS 0xDA
#define S_SETVCOMDETECT 0xDB
#define S_SETDISPLAYCLOCKDIV 0xD5
#define S_SETPRECHARGE 0xD9
#define DIV_RATIO 0x80 //recommended ratio
#define MULTIPLEX 0x3F //and multiplex
#define INT_VCC 0x14
char text[22]; //temporary text buffer for OLED
//Font 6*8 - slightly clearer than most fonts this size.
ROM BYTE font[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Code for char
0x00, 0x00, 0xBE, 0x00, 0x00, 0x00, // Code for char !
0x00, 0x00, 0x03, 0x00, 0x03, 0x00, // Code for char "
0x50, 0xF8, 0x50, 0xF8, 0x50, 0x00, // Code for char #
0x48, 0x54, 0xFE, 0x54, 0x24, 0x00, // Code for char $
0x98, 0x58, 0x20, 0xD0, 0xC8, 0x00, // Code for char %
0x60, 0x9C, 0xAA, 0x44, 0x80, 0x00, // Code for char &
0x00, 0x00, 0x00, 0x03, 0x00, 0x00, // Code for char '
0x00, 0x38, 0x44, 0x82, 0x00, 0x00, // Code for char (
0x00, 0x82, 0x44, 0x38, 0x00, 0x00, // Code for char )
0x02, 0x06, 0x03, 0x06, 0x02, 0x00, // Code for char *
0x10, 0x10, 0x7C, 0x10, 0x10, 0x00, // Code for char +
0xA0, 0x60, 0x00, 0x00, 0x00, 0x00, // Code for char ,
0x10, 0x10, 0x10, 0x10, 0x10, 0x00, // Code for char -
0xC0, 0xC0, 0x00, 0x00, 0x00, 0x00, // Code for char .
0x80, 0x40, 0x20, 0x10, 0x08, 0x00, // Code for char /
0x7C, 0xA2, 0x92, 0x8A, 0x7C, 0x00, // Code for char 0
0x00, 0x84, 0xFE, 0x80, 0x00, 0x00, // Code for char 1
0xC4, 0xA2, 0x92, 0x92, 0x8C, 0x00, // Code for char 2
0x44, 0x82, 0x92, 0x92, 0x6C, 0x00, // Code for char 3
0x18, 0x14, 0x12, 0xFE, 0x10, 0x00, // Code for char 4
0x9E, 0x92, 0x92, 0x92, 0x62, 0x00, // Code for char 5
0x7C, 0x92, 0x92, 0x92, 0x64, 0x00, // Code for char 6
0x06, 0x02, 0xE2, 0x12, 0x0E, 0x00, // Code for char 7
0x6C, 0x92, 0x92, 0x92, 0x6C, 0x00, // Code for char 8
0x4C, 0x92, 0x92, 0x92, 0x7C, 0x00, // Code for char 9
0xCC, 0xCC, 0x00, 0x00, 0x00, 0x00, // Code for char :
0xAC, 0x6C, 0x00, 0x00, 0x00, 0x00, // Code for char ;
0x00, 0x10, 0x28, 0x44, 0x82, 0x00, // Code for char <
0x48, 0x48, 0x48, 0x48, 0x48, 0x00, // Code for char =
0x00, 0x82, 0x44, 0x28, 0x10, 0x00, // Code for char >
0x04, 0x02, 0xB2, 0x12, 0x0C, 0x00, // Code for char ?
0x7C, 0x82, 0xBA, 0xAA, 0xBC, 0x00, // Code for char @
0xF8, 0x14, 0x12, 0x14, 0xF8, 0x00, // Code for char A
0xFE, 0x92, 0x92, 0x92, 0x6C, 0x00, // Code for char B
0x7C, 0x82, 0x82, 0x82, 0x44, 0x00, // Code for char C
0xFE, 0x82, 0x82, 0x44, 0x38, 0x00, // Code for char D
0xFE, 0x92, 0x92, 0x82, 0x82, 0x00, // Code for char E
0xFE, 0x12, 0x12, 0x02, 0x02, 0x00, // Code for char F
0x7C, 0x82, 0x92, 0x92, 0xF4, 0x00, // Code for char G
0xFE, 0x10, 0x10, 0x10, 0xFE, 0x00, // Code for char H
0x00, 0x82, 0xFE, 0x82, 0x00, 0x00, // Code for char I
0x60, 0x80, 0x80, 0x80, 0x7E, 0x00, // Code for char J
0xFE, 0x10, 0x18, 0x24, 0xC2, 0x00, // Code for char K
0xFE, 0x80, 0x80, 0x80, 0x80, 0x00, // Code for char L
0xFE, 0x04, 0x38, 0x04, 0xFE, 0x00, // Code for char M
0xFE, 0x04, 0x08, 0x10, 0xFE, 0x00, // Code for char N
0x7C, 0x82, 0x82, 0x82, 0x7C, 0x00, // Code for char O
0xFE, 0x12, 0x12, 0x12, 0x0C, 0x00, // Code for char P
0x7C, 0x82, 0xA2, 0xC2, 0xFC, 0x00, // Code for char Q
0xFE, 0x12, 0x12, 0x12, 0xEC, 0x00, // Code for char R
0x4C, 0x92, 0x92, 0x92, 0x64, 0x00, // Code for char S
0x02, 0x02, 0xFE, 0x02, 0x02, 0x00, // Code for char T
0x7E, 0x80, 0x80, 0x80, 0x7E, 0x00, // Code for char U
0x3E, 0x40, 0x80, 0x40, 0x3E, 0x00, // Code for char V
0xFE, 0x80, 0x70, 0x80, 0xFE, 0x00, // Code for char W
0xC6, 0x28, 0x10, 0x28, 0xC6, 0x00, // Code for char X
0x06, 0x08, 0xF0, 0x08, 0x06, 0x00, // Code for char Y
0xC2, 0xA2, 0x92, 0x8A, 0x86, 0x00, // Code for char Z
0x00, 0xFE, 0x82, 0x82, 0x00, 0x00, // Code for char [
0x08, 0x10, 0x20, 0x40, 0x80, 0x00, // Code for char BackSlash
0x00, 0x82, 0x82, 0xFE, 0x00, 0x00, // Code for char ]
0x00, 0x08, 0x04, 0x02, 0x04, 0x08, // Code for char ^
0x80, 0x80, 0x80, 0x80, 0x80, 0x00, // Code for char _
0x00, 0x00, 0x02, 0x04, 0x00, 0x00, // Code for char `
0x40, 0xA8, 0xA8, 0xA8, 0xF0, 0x00, // Code for char a
0xFE, 0x88, 0x88, 0x88, 0x70, 0x00, // Code for char b
0x70, 0x88, 0x88, 0x88, 0x10, 0x00, // Code for char c
0x70, 0x88, 0x88, 0x88, 0xFE, 0x00, // Code for char d
0x70, 0xA8, 0xA8, 0xA8, 0x30, 0x00, // Code for char e
0x10, 0xFC, 0x12, 0x12, 0x04, 0x00, // Code for char f
0x90, 0xA8, 0xA8, 0xA8, 0x70, 0x00, // Code for char g
0xFE, 0x10, 0x10, 0x10, 0xE0, 0x00, // Code for char h
0x00, 0x90, 0xF4, 0x80, 0x00, 0x00, // Code for char i
0x40, 0x80, 0x80, 0x90, 0x74, 0x00, // Code for char j
0xFE, 0x20, 0x50, 0x88, 0x00, 0x00, // Code for char k
0x7E, 0x80, 0x80, 0x00, 0x00, 0x00, // Code for char l
0xF8, 0x08, 0x70, 0x08, 0xF0, 0x00, // Code for char m
0xF8, 0x08, 0x08, 0x08, 0xF0, 0x00, // Code for char n
0x70, 0x88, 0x88, 0x88, 0x70, 0x00, // Code for char o
0xF8, 0x28, 0x28, 0x28, 0x10, 0x00, // Code for char p
0x10, 0x28, 0x28, 0xF8, 0x80, 0x00, // Code for char q
0xF8, 0x08, 0x08, 0x08, 0x10, 0x00, // Code for char r
0x90, 0xA8, 0xA8, 0xA8, 0x48, 0x00, // Code for char s
0x08, 0x08, 0xFE, 0x88, 0x88, 0x00, // Code for char t
0x78, 0x80, 0x80, 0x80, 0xF8, 0x00, // Code for char u
0x38, 0x40, 0x80, 0x40, 0x38, 0x00, // Code for char v
0xF8, 0x80, 0x70, 0x80, 0xF8, 0x00, // Code for char w
0x88, 0x50, 0x20, 0x50, 0x88, 0x00, // Code for char x
0x18, 0xA0, 0xA0, 0xA0, 0x78, 0x00, // Code for char y
0x88, 0xC8, 0xA8, 0x98, 0x88, 0x00, // Code for char z
0x00, 0x10, 0x6C, 0x82, 0x00, 0x00, // Code for char {
0x00, 0x00, 0xFE, 0x00, 0x00, 0x00, // Code for char |
0x00, 0x82, 0x6C, 0x10, 0x00, 0x00, // Code for char }
0x00, 0x08, 0x04, 0x08, 0x10, 0x08, // Code for char ~
0x7C, 0x7C, 0x00, 0x00, 0x00, 0x00, // Code for char
//Characters 32 to 127
//The next eleven characters are above 127, and give the shapes used for
//the bar graph capability - remove if not needed
0x82, 0x82, 0x82, 0x82, 0x82, 0x82, //top and bottom bars only 128
0xFE, 0x82, 0x82, 0x82, 0x82, 0x82, //Open for bar 129
0xFE, 0xFE, 0x82, 0x82, 0x82, 0x82, //second bar
0xFE, 0xFE, 0xFE, 0x82, 0x82, 0x82,
0xFE, 0xFE, 0xFE, 0xFE, 0x82, 0x82,
0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0x82,
0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE,
//Full block for bar 134
0x82, 0x82, 0x82, 0x82, 0xFE, 0xFE, //final one cloing shape 135
0xFE, 0x82, 0x82, 0x82, 0xFE, 0xFE, //single left and double right
0xFE, 0xFE, 0x82, 0x82, 0xFE, 0xFE,
0xFE, 0xFE, 0xFE, 0x82, 0xFE, 0xFE,
0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE,
0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE //New closing point for 0..100
//final one closing shape 140
};
//Character 140
ROM BYTE init_sequence[] = S_DISPLAYOFF,
S_SETDISPLAYCLOCKDIV,
DIV_RATIO,
S_SETMULTIPLEX,
MULTIPLEX,
S_SETDISPLAYOFFSET,
0, // no offset
S_SETSTARTLINE,
S_CHARGEPUMP,
INT_VCC, // using internal VCC
S_MEMORYMODE, //Since byte is vertical writing column by column
0, // default horizontal addressing
(S_SEGREMAP | 0x1), // rotate screen 180
S_COMSCANDEC,
S_SETCOMPINS,
0x12,
S_SETCONTRAST,
0xEF, //experiment.... 0xCf for 1306
S_SETPRECHARGE,
0xF1,
S_SETVCOMDETECT,
0x40,
S_DISPLAYALLON_RESUME,
S_NORMALDISPLAY,
S_DISPLAYON; //switch on OLED
//Initilalisation sequence
#define NORMAL 0
#define DOUBLE_HEIGHT 1
#define DOUBLE_WIDTH 2
#define LARGE DOUBLE_HEIGHT+DOUBLE_WIDTH
unsigned int8 O_current_col,O_current_row; //where text is currently 'working'
int8 size=NORMAL;
//Global flag for drawing mode
int1 set=TRUE; //allow funstions to set or reset - inverts drawing functions
#ifndef TEXT_ONLY
unsigned int8 window_buffer[WINDOW_WIDTH*WINDOW_HEIGHT/8];
//so with the example given, 128 bytes of RAM - much more practical on small chips!...
//This is the 'graphic window' buffer, so not needed for text only
#endif
#ifdef PSV
void OLED_commands(byte * commands, unsigned int8 number)
#else
void OLED_commands(rom byte* commands, unsigned int8 number)
#endif
//send a multiple command, or commands to the display - number says how many
//from a ROM buffer
{
int8 ctr; //counter for the transmission
i2c_start ();
i2c_write (SSDADDR); //select the display
i2c_write (COMMAND_ONLY); //we are sending a command
for (ctr=0;ctr<number;ctr++)
{
I2c_write(commands[ctr]);
}
i2c_stop();
}
void OLED_data(unsigned int8 * data, unsigned int8 number)
//send 'number' bytes of data to display - from RAM
{
unsigned int8 ctr; //updated to allow 128bytes on PIC24/30 etc..
i2c_start ();
i2c_write (SSDADDR); //select the display
i2c_write (DATA_ONLY); //we are sending data(s)
for (ctr=0;ctr<number;ctr++)
i2c_write(data[ctr]); //send the byte(s)
i2c_stop ();
}
void OLED_address(unsigned int8 x, unsigned int8 y)
{
//routine to move the memory pointers to x,y.
//x is 0 to 127 (column), y (row) is 0 to 7 (page only)
#ifdef SH1106
x+=2;
#endif
i2c_start();
i2c_write (SSDADDR); //select the display
i2c_write(COMMAND_ONLY); //we are sending command(s)
i2c_write(S_ROWADDRESS | y); //select the display row
i2c_write(S_SETLOWCOLUMN | (x & 0x0F)); //low col address
i2c_write(S_SETHIGHCOLUMN | ((x>>4) & 0x0F)); //high col address
i2c_stop();
} //also made more efficient
void OLED_gotoxy(unsigned int8 x, unsigned int8 y)
{
//text x,y position bases on 8 lines/character and 6 columsn
//0 to 20 columns, 0 to 7 rows
if (x>(S_LCDWIDTH/6)-1) return;
if (y>(S_LCDHEIGHT/8)-1) return;
O_current_col=x; //efficient *6
O_current_row=y;
OLED_address((unsigned int16)x*4+(unsigned int16)x*2,y); //position display
}
void OLED_CLS(void)
{
unsigned int8 row, col;
//Just fill the memory with zeros
for (row=0;row<S_LCDHEIGHT/8;row++)
{
OLED_address(0,row); //take the addresses back to 0,0 0,1 etc..
i2c_start();
i2c_write(SSDADDR); //select the display
i2c_write(DATA_ONLY); //we are sending data(s)
for (col=0;col<S_LCDWIDTH;col++)
{
if (set)
i2c_write (0); //send 1024 zeros
else
i2c_write(255); //or the inverse
}
i2c_stop ();
}
OLED_gotoxy(0,0); //and text back to the top corner
}
//Macros to efficiently double bits from a nibble
#define DOUBLE_BIT(N, S, D) if (bit_test(S,N)) { bit_set(D,(N*2)); bit_set(D,(N*2)+1); }
#define DOUBLE_B_HIGH(N, S, D) if (bit_test(S,N+4)) { bit_set(D,(N*2)); bit_set(D,(N*2)+1); }
void invert(unsigned int8 * buffer, unsigned int8 number) //routine to invert
{//data when'set==FALSE'
do
{
*buffer^=0xFF;
buffer++;
} while(--number); //invert all the bits in the buffer
}
//Change here to allow multiple fonts
//This routine can be used by multiple output routines
#ifdef PSV
void FONT_line(byte * font_data, unsigned int8 count)
#else
void FONT_line(ROM byte * font_data, unsigned int8 count)
#endif
{
//new function to transfer a line of data from the font table.
//designed to optimise the handling of double size fonts
//Sends one line of 'count' characters from the font to the display,
//with doubling of width if necessary. Maximum 12 chars.
unsigned int8 cols[24], ctr=0, width, inc_col, tchr, temp=0;
if (size & DOUBLE_WIDTH)
{
width=count*2;
inc_col=2;
}
else
{
width=count;
inc_col=1;
}
for (ctr=0;ctr<width;ctr+=inc_col) //for columns
{
cols[ctr]=0;
tchr=font_data[temp++]; //one byte of character from the font
if (size & DOUBLE_HEIGHT)
{
DOUBLE_BIT(0,tchr,cols[ctr])
DOUBLE_BIT(1,tchr,cols[ctr])
DOUBLE_BIT(2,tchr,cols[ctr])
DOUBLE_BIT(3,tchr,cols[ctr])
} //efficently double the bits from the low nibble
else
cols[ctr]=tchr;
if (size & DOUBLE_WIDTH)
cols[ctr+1]=cols[ctr]; //duplicate the byte
}
if (set==FALSE)
invert(cols,width);
OLED_data(cols,width);
//Now if doubling in height repeat usiong the other nibble
if (size & DOUBLE_HEIGHT)
{
temp=0; //back to the start of the font character
OLED_address((unsigned int16)O_current_col*4+O_current_col*2,O_current_row+1); //next row
for (ctr=0;ctr<width;ctr+=inc_col) //through the columns again
{
cols[ctr]=0;
tchr=font_data[temp++]; //one byte of character from the font
DOUBLE_B_HIGH(0,tchr,cols[ctr])
DOUBLE_B_HIGH(1,tchr,cols[ctr])
DOUBLE_B_HIGH(2,tchr,cols[ctr])
DOUBLE_B_HIGH(3,tchr,cols[ctr])
//efficently double the bits from the high nibble
if (size & DOUBLE_WIDTH)
cols[ctr+1]=cols[ctr]; //duplicate the byte if double_width
}
if (set==FALSE)
invert(cols,width);
//Now send the bytes for the second row
OLED_data(cols,width);
}
}
//Fastest text mode. No support for any control. Standard font only.
void OLED_text(unsigned int8 * text, unsigned int8 number)
{
unsigned int8 inc_col;
unsigned int16 temp;
//size allows double height & double width
//Here double height/width
//for this I have to do two transfers each of double the amount of data
//and reposition between each
if (size & DOUBLE_WIDTH)
{
inc_col=2;
}
else
{
inc_col=1;
}
do {
temp=(*text)-32;
if (temp>108)
temp=0; //block illegal characters
temp=((unsigned int16)temp*2)+((unsigned int16)temp*4); //efficient *6
FONT_line(&font[temp],6); //six characters from the font
//Now because I'll be in the wrong position (may be one line down)
//have to re-locate
O_current_col+=inc_col;
OLED_address((unsigned int16)O_current_col*4+O_current_col*2,O_current_row); //ready for next character
text++; //and select the next character
} while (--number); //and on to the next character
}
void OLED_putc(unsigned int8 chr)
{
//this is a putc wrapper for the text function - note much slower
//than sending the entire line directly
if (chr=='\f')
{
OLED_CLS(); //handle Clear screen (form feed)
return;
}
if (chr=='\r')
{
OLED_gotoxy(0,O_current_row); //carriage return
return;
}
if (chr=='\n')
{
if (size==NORMAL)
OLED_gotoxy(O_current_col,O_current_row+1);
else
OLED_gotoxy(O_current_col,O_current_row+2);
return;
}
OLED_text(&chr,1);
}
void OLED_textbar(unsigned int8 width)
{
//This draws a bar graph using text characters
int8 ctr;
unsigned int8 bar[9];
//graph is now 0 to 100.
//prints at current text location.
width/=2;
width+=2; //ensure >0 - g1ves 2 to 52
if (width>52)
width=52;
for (ctr=0;ctr<8;ctr++)
{
if (width>=6)
{
bar[ctr]=134; //full bar
width-=6;
}
else
{
bar[ctr]=128+width; //partial bars
width=0;
}
}
//now handle the right hand end of the bar
bar[8]=135+width;
OLED_text(bar,9);
}
// Dela!!!!!
// Write_OLED_xy(1,1,"test");
// numbering begins with 0, ie column 1 and row 1 would be 0,0
void Write_OLED_xy(unsigned int8 Column, unsigned int8 Row, char *A){
strcpy(text,A);
OLED_gotoxy(Column,Row);
OLED_text(text,strlen(text));
}
//Now comes the 'exception' part to the driver
//Basic line & circle code writing to a small _window_ that can then
//be burst transmitted to the LED. Neat thing is that the same window
//can be used multiple times. So (for instance) you could write text on the
//left of the display, then have a 64*32 window. Draw something into this
//and display it at 64, 0 (text row) on the display, then draw something
//different (using the same window), and put this at 64, 4. The location
//the window is drawn has to be a byte boundary (so 0 to 7, for 0 to 63
//on the display.
//The sequence would be clear_window, line, circle etc.. Then draw_window(x,y)
//If you don't want to use the smace for this, then #define TEXT_ONLY at the start
//of the code
#ifndef TEXT_ONLY
void clear_window(void)
{
memset(window_buffer,(set)?0:255,WINDOW_WIDTH*WINDOW_HEIGHT/8); //clear the buffer
}
//Basic pixel routine
#inline
void set_pixel(unsigned int8 x, unsigned int8 y)
{
unsigned int16 locn; //This can be int8, if buffer is restricted to max 256 bytes
//potentially slightly faster. However 1616 is 'generic'.
if (x>=WINDOW_WIDTH) return;
if (y>=WINDOW_HEIGHT) return; //Limit check - ensures I do not try to write
//outside buffer boundaries
locn=((y/8)*WINDOW_WIDTH)+x; //location in buffer
//handle setting or resetting the pixel according to flag 'set'
if (set)
bit_set(window_buffer[locn],(y & 7)); //set the bit (to 1)
else
bit_clear(window_buffer[locn],(y & 7)); //set the bit (to 0)
}
//efficient line routine
void line(unsigned int8 x1, unsigned int8 y1, unsigned int8 x2, unsigned int8 y2)
{
unsigned int16 i;
int1 _plot;
signed int16 _dx,_dy;
unsigned int16 _ix,_iy,_inc,_plotx,_ploty,_x,_y;
//line from X1,Y1 to X2,Y2
//first the differences between the coordinate pairs
_dx=(signed int16) x2-x1;
_dy=(signed int16) y2-y1;
// ix & iy are the absolute increments required
_ix=(_dx<0)?(-_dx):_dx;
_iy=(_dy<0)?(-_dy):_dy;
// we must step the longest length (x or y)
_inc=(_ix>_iy)?_ix:_iy;
// make dx and dy the step required.
if (_dx>0) _dx=1; else if (_dx<0) _dx=-1;
if (_dy>0) _dy=1; else if (_dy<0) _dy=-1;
// actual plotting points
_plotx=x1;
_ploty=y1;
// start at 0
_x=0;
_y=0;
// set endpoint
set_pixel(_plotx,_ploty);
/* we implement Bressenhams algorithm for a line using integer steps
and only plotting the point when we get to a new co-ord pair */
for (i=0;i<=_inc;++i)
{
_x += _ix;
_y += _iy;
// do not plot yet
_plot=FALSE;
//if we are at a new pair - set the plot flag and increment
//the phsical plotting point
if (_x > _inc)
{
_plot = TRUE;
_x -= _inc;
_plotx += _dx;
}
if (_y > _inc)
{
_plot = TRUE;
_y -= _inc;
_ploty += _dy;
}
// now plot the point
if (_plot)
{
set_pixel(_plotx,_ploty); //this automatically handles set/reset
}
}
}
void rect(unsigned int8 x1, unsigned int8 y1, unsigned int8 x2, unsigned int8 y2)
{
//outline a rectangle
line(x1, y1, x2, y1); //Just draw four sides
line(x1, y2, x2, y2);
line(x1, y1, x1, y2);
line(x2, y1, x2, y2);
}
void circle(unsigned int8 x, unsigned int8 y, unsigned int8 radius, int1 fill)
{
signed int8 a, b, P;
a = 0;
b = radius;
P = 1 - radius;
do
{
if(fill)
{
line(x-a, y+b, x+a, y+b);
line(x-a, y-b, x+a, y-b);
line(x-b, y+a, x+b, y+a);
line(x-b, y-a, x+b, y-a); //inefficient but easy to code....
}
else
{
set_pixel(a+x, b+y);
set_pixel(b+x, a+y);
set_pixel(x-a, b+y);
set_pixel(x-b, a+y);
set_pixel(b+x, y-a);
set_pixel(a+x, y-b);
set_pixel(x-a, y-b);
set_pixel(x-b, y-a); //othewise draw the octant points
}
if(P < 0)
P += 3 + 2 * a++;
else
P += 5 + 2 * (a++ - b--);
} while(a <= b);
}
void draw_window(unsigned int8 x, unsigned int8 y)
{
unsigned int8 yctr;
unsigned int16 transfer=WINDOW_WIDTH;
//routine to copy the window to the display.
//x is in pixels, y in bytes (0 to 8). Uses burst transmission for each line
if ((x+transfer)>=S_LCDWIDTH)
{
//here the window would go off the edge of the screen...
transfer=(S_LCDWIDTH-1)-x;
}
for (yctr=0;yctr<(WINDOW_HEIGHT/8);yctr++)
{
if (y+yctr>7) return; //off the end of RAM
OLED_address(x,y+yctr); //position to the byte at the start of the line
//transfer the line
OLED_data(window_buffer+((unsigned int16)yctr*WINDOW_WIDTH),transfer);
//again int16 only needed here if buffer>256 bytes
}
}
#endif
|
Last edited by PrinceNai on Tue Jul 20, 2021 6:21 pm; edited 1 time in total |
|